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Executive Summary

The objective of this project was to evaluate and demonstrate non-destructive test methods to
determine the thickness of new pavement to within 2.5 mm (0.1 inch). Various methods were
evaluated and tested in the laboratory and in the field. A series of final evaluations were carried
out on test pavementsin California. For asphalt pavement, two methods based on ground
penetrating radar (GPR) technology met the objectives of this project. The horn antenna GPR
method collects data continuously and handles the full range of expected thickness values. The
CMP GPR method is a point measurement method, and can evaluate thickness greater than 80
mm. For PCC pavement, the impact-echo (1E) method was found to be the most effective
available thickness measurement technology. However, the accuracy obtained with the impact-
echo method was 50 mm (0.2 inches) and fell short of the project objective.

Deficiencies in the thickness of newly constructed pavements and overlays reduce the life of the
pavement and increase costs to the agency. The ability to accurately quantify thickness
deficiencies and the associated increase in life cycle cost is the basis for the implementation of
pay factors. Cores determine local pavement thickness accurately, but they are time consuming,
they damage the pavement, and they represent a very limited sample of the actual pavement. The
objective of the reported work has been to test and recommend thickness measurement methods
that are quick, non-destructive, reliable, and repeatable, and which can accurately represent the
thickness of a newly constructed pavement section.

An analysis of the accuracy requirements for pay factor determination has been carried out. The
analysis shows that to meet pay factor requirements, the thickness measurement method should be
capable of determining the mean pavement thickness to within 2.5 mm (0.1 inch). The analysis
also shows that it is necessary to obtain a large number of sample points to accurately characterize
the mean pavement thickness. For example, a pavement with a 5 mm (0.2 inch) thickness
standard deviation would require 70 cores to meet the 2.5 mm (0.1 inch) accuracy requirement.
Alternative non-destructive methods, although less accurate than cores, can meet the accuracy
requirement by providing many more data samples.

The project has been divided into two areas — asphalt pavement and concrete pavement. A
preliminary evaluation of available methods led to the recommendation of three ground
penetrating radar (GPR) methods for asphalt pavement and one of the GPR methods and two
mechanical wave methods for concrete. These methods were evaluated with theoretical analysis
and subsequently with a series of laboratory tests. In the laboratory these methods were applied to
thickness evaluation using both simulated and actual slabs of pavement material. The results of
the laboratory testing indicated that two of the GPR methods —the horn antenna method and the
common midpoint (CMP) method have the potential to achieve the accuracy objectives of this
project for asphalt pavement. The laboratory tests and analyses also indicated that the CMP
method, along with the impact-echo (IE) and multi-receiver (MRT) mechanical wave methods
had similar potential for concrete pavement. The CMP method, however, showed some
limitations with early age concrete due to the high conductivity associated with the free water.

The selected methods were further investigated on full-scale test pavements, selected due to the
availability of core thickness data for correlation. Thickness measurements with the various test
methods were made on these pavements, and the results were correlated with core data. Based on
the data from I-93, the FAATC and the FHWA ALF sites, it appeared that the horn antenna
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method was capable of producing accurate asphalt thickness data on full-scale pavement
thickness sections over a thickness range from 51 to 205 mm (2 to 8 inches). The CMP method
produced similar results, but tended to overestimate the thickness and was limited to the
evaluation of thickness greater than 76 mm (3 inches). Data from the NCAT site suggest that the
type of surface material might influence the accuracy of the horn antenna thickness calculation.
These data suggest that both methods would benefit by implementing some type of site-specific
calibration. For concrete thickness, the CMP method applied to a two-year old concrete pavement
provided accurate data for average thickness, although with somewhat more scatter than was
obtained for asphalt. CMP thickness measurements on a continuously reinforced concrete
pavement (CRCP) were less successful than on un-reinforced concrete pavement due to the
influence of the reinforcement. Data collection methods to reduce the influence of the reinforcing
were recommended. Impact-Echo method appeared to be capable of providing accurate concrete
thickness measurements if some type of bias correction could be applied. Once again, this finding
suggests some site-specific calibration to eliminate the bias. The results for the other mechanical
wave method, the multi-receiver technique, were inconsistent. Given the developmental status of
this method and the need to implement and test a new type of mechanical wave impact source,
further study of this technique would be required before it could be evaluated under this project.
Since such study was beyond the scope of this project, further evaluation of this technique was
discontinued.

Final testing was carried out on 11 selected pavement sections in California, 6 asphalt sections
and 5 concrete sections. Test sections were 305 meters (1000 feet) in length. Some were still
closed to traffic due to ongoing construction, while others were already open to traffic. The
asphalt sites were selected to represent three main conditions: (a) thick and thin asphalt on
aggregate base; (b) asphalt on concrete; and (c¢) thick and thin asphalt overlays. The concrete sites
were selected to represent variations in concrete thickness and age. Age was selected as a variable
because of its influence on GPR penetration and on the mechanical wave velocity.

Each site was evaluated for thickness using the test methods recommended in this study. The
asphalt sites were tested with the horn antenna and CMP methods. The concrete pavements were
evaluated with two different impact-echo devices, along with the CMP method. After this
evaluation, cores were taken for comparison with the test data. Twenty cores were taken at each
asphalt site and ten at each concrete site. The thickness values determined from the various test
methods were compared to the core values. The comparison showed generally good correlation,
but also the need for a calibration at each site. One core location per site was selected for
calibration. A method was developed to determine the optimum core location from the test data.
Analysis of the calibrated thickness data showed that, for the asphalt pavements, both the horn
antenna and CMP methods determined the average section thickness to within 2.5 mm (0.1
inches) of the average core value. The CMP method, however, appeared to be limited to
measuring asphalt thickness greater than 89 mm (3.5 inches). For the concrete pavements, the two
impact-echo devices tested were shown to be able to measure the average section thickness to
within 4 and 6 mm (0.16 and 0.24 inches) of average core value, respectively. The CMP method
did not perform as well, and is not recommended for future concrete thickness quality assurance.

This study has provided the specification of two GPR methods capable of measuring the thickness
of new asphalt thickness with accuracy suitable for use with pay factors. Not only do the
recommended methods provide adequate accuracy when compared to cores, but they are able to
generate the number of thickness data points required to accurately characterize the pavement
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thickness. This study has also provided a specification for impact-echo as a method for
determining concrete pavement thickness. The accuracy obtained with impact echo did not reach
the initial goal of 25 mm (0.10 inches). However, the method may be of interest for other
applications.

It is recommended that the specified methods be evaluated on pavement sections whose size is
more typical of construction project sections. The size of the section may determine whether or
not a single calibration core, or multiple calibration cores are required. The relationship between
the size of the section, the test data, and the number of calibration cores needs to be established.
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1. I ntroduction

Pavement layer thickness is an important factor in determining the quality of newly constructed
pavements and overlays, since deficiencies in thickness reduce the life of the pavement. For
asphalt, the relationships between thickness deficiency and pavement life have been quantified
using a performance model (1). These relationships show, for example, that a 13 mm (0.5 inch)
thickness deficiency on a nominally 91 mm (3.6 inch) thick pavement can lead to a 40 %
reduction in pavement life. This reduction in pavement life has significant economic implications.

Current California practice for concrete paving involves determination of thickness by cores,
approximately 3 per 305 m (1000 feet), and there are penalties for deficiencies in thickness. For
asphalt, payment is made by the ton, which addresses the average thickness but not the variability.
The concept of “pay factors”, already implemented for other quality measures (such as density),
provides a mechanism for transferring the cost of construction deficiencies to the contractor.

In order to implement pavement thickness as a measure of quality assurance and as a basis for pay
factors, it is necessary to have an accurate and reliable method for making the thickness
measurement. Cores are accurate, but they are time consuming, they damage the pavement, and
they represent a very small sample of the actual pavement. Therefore, it is desirable to have a
thickness measuring method which is quick, non-destructive, and which can generate an accurate
and representative population of pavement thickness data points.

For asphalt pavement, ground-penetrating radar (GPR) is by far the most established technology
for measuring pavement thickness. Evaluation studies have been carried out by over ten state
highway agencies, by SHRP, MnROAD, and by the FHWA, all of which have documented the
accuracy of GPR asphalt thickness vs. core samples (2)(3). These studies have shown that for
newly constructed pavements, the deviation between GPR and core results range from 2% -5% of
the total thickness. Studies have also shown, that with proper equipment and data processing,
GPR can accurately determine thickness for overlays as thin as 25 mm (1 inch) (4). GPR can be
collected continuously at various speeds, and thus allowing for the availability of a large number
of thickness data points to be collected economically. Finally, GPR has also been effectively used
to determine variations in asphalt density (5). Such additional information would enhance the
overall quality assurance program. Most of these GPR layer thickness studies have been carried
out with “air-coupled horn” antennas, since these can be implemented at driving speed without
lane closures. However, for the purposes of quality assurance, lower data collection speeds permit
consideration of “ground-coupled” antennas as well. This alternative introduces some interesting
and potentially attractive options that will be explored during this program.

For concrete pavement, the situation is different. The GPR wave attenuates more rapidly in
concrete, especially new concrete, than it does in asphalt (6). This is due to the free moisture and
conductive salts that are present in the concrete mix. Also, the dielectric contrast between
concrete and base is much smaller than it is between asphalt and base. These two factors in
combination often lead to a diminished, sometimes absent, reflection at the base of the concrete.
Therefore, air-coupled GPR is not a feasible technology for thickness measurement on new
concrete. Ground-coupled GPR, on the other hand, provides more energy input into the pavement,
and can overcome some of the penetration limitations of the horn antenna.

Mechanical wave techniques, on the other hand, work much more effectively than GPR in
concrete. Concrete pavements are typically thick enough to fall within the measurement range of
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mechanical wave measurements. Mechanical waves travel well in concrete, and there is usually a
strong mechanical contrast between the concrete and the base material. Data collection is
considerably slower than with GPR, but certainly faster and less expensive than coring.

Based on the background described above, the objectives of this project have been to:

1. Develop, evaluate and test advanced air-coupled and ground-coupled GPR methods
for obtaining accurate asphalt pavement layer thickness data;

2. Develop, evaluate, and test ground-coupled GPR and mechanical wave methods for
obtaining accurate concrete pavement thickness data;

3. Specify the use of these methods in the context of a quality assurance program.

In order to meet these objectives, Infrasense, Inc. has conducted a comprehensive research and
evaluation program. The program combined theoretical study, laboratory testing, field testing on
constructed test pavements, and field evaluations on selected California pavement sites. The
following sections of this report describe these efforts in detail. The report discusses the accuracy
requirements in Section 2, the methods that were evaluated in Section 3, theoretical analyses of
the proposed methods in Section 4, laboratory studies in Section 5, preliminary field tests in
Section 6, and tests on Caltrans pavements in Section 7. An equipment and method specification
is presented in Section 8.
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2. Accuracy Requirements For Pavement Thickness Quality Assurance

In order to use a non-destructive evaluation (NDE) technique for quality assurance (QA) and pay
factors, it is necessary for the technique to provide a level of accuracy which is appropriate for the
application. Accuracy is defined as the difference between the "true" pavement thickness and the
"measured" pavement thickness. For pay factors, the accuracy in measurement of pavement
thickness has to be sufficient to quantify the loss of pavement life. The loss of pavement life vs.
thickness has been translated into pay factors for asphalt pavement by Deacon et. al (1), and can
be shown graphically as in Figure 1. The figure plots pay factor on the vertical axis vs. deviation
of average pavement thickness. The deviation is the difference between the actual average
pavement thickness and the average pavement thickness specified.

Note that the analysis was done for thickness increments of 5 mm (0.2 inch). In order to use this
analysis, thickness measurements need to be accurate enough to ensure that the correct 5 mm (0.2
inch) interval (and the associated pay factor) is selected. Ideally, one would have perfectly
accurate measurements. However, real measurement systems have errors. Even cores, which are
taken as the standard measurement, introduce significant errors simply because they represent
such a limited sample. Therefore, there will always be a possibility that the pavement thickness
characterization will not fit the true range according to Figure 1. For this project, the accuracy
objective has been specified as = 2.5 mm (0.1 inch), which is interpreted to mean that the true
mean thickness is equally likely to occur somewhere in a range of + 2.5 mm (0.1 inch) around the
measured mean thickness. Based on the 5 mm (0.2 inch) decision ranges of Figure 1, an accuracy
of £2.5 mm (0.1 inch) indicates that the thickness range will be accurately classified at least 75%
of the time.
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Figure 1 — Pay Factors vs. Mean Thickness Deviation
(from Deacon, et. al.)
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Figure 1 also indicates that the variability around the mean, as measured by the coefficient of
variation (COV), also affects the pavement life and the associated pay factor. The coefficient of
variation is defined as the standard deviation divided by the mean. Therefore, it would be
desirable for the proposed NDE to accurately characterize both the mean thickness and the
standard deviation.

In order to assess accuracy of an NDE method, one has to consider two sources of error: sampling
error and measurement error. Sampling error represents the fact that there are an infinite number
of pavement thickness values, and that we are only sampling a small number of these values to
represent the entire pavement. Sampling error is large when we take a small number of samples
(like coring) and when the pavement thickness itself is highly variable. Sampling error is reduced
by taking more samples. Sampling error is therefore characterized by the standard deviation of the
pavement thickness and the number of thickness measurements.

Measurement error is the difference between the measured thickness at a given location and the
"true" thickness at that location. Measurement error is characterized by the variability of the
measured thickness around the true thickness, and can be represented by a standard deviation. A
recent study on PCC pavements in Indiana showed that the typical standard deviation of thickness
measurements cores was 2.5 mm (0.10 inches) (10). Since cores are the most direct method for
thickness determination, it is expected that the non-destructive methods considered under this
program will have higher measurement errors.

A statistical analysis has been carried out to investigate the relationship between the measurement
error, the variability of the pavement section, and the number of measurement points. A sample
result of this analysis is shown in Figure 2. The figure shows the number of sample points
required to achieve an accuracy of 2.5 mm (0.1 inch) with 90% confidence. The number of
sample points is presented as a function of the standard deviation of the pavement thickness. Each
of the four curves represents a measurement technology with different measurement errors, as
characterized by a standard deviation.
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Figure 2 — Number of Samples Required to Achieve
Accuracy of 2.5 mm (0.1 inch) with 90% Confidence

The curves show that the number of samples is primarily dependent on the variability of the

pavement and less dependent on the standard deviation of the measurement. It also shows that for
accurate measurements such as cores, the number of cores required to achieve an overall accuracy
of 2.5 mm (0.1 inch) far exceeds the number of cores generally taken for pavement thickness QA.

For example, assuming that the standard deviation for core measurements is 2.5 mm (0.1 inch), a
pavement with standard deviation of 5 mm (0.2 inches) requires 70 cores. For the same pavement,
an NDE measurement technology with a standard deviation of 6 mm (0.25 inches) would require
100 samples.

It is clear from this analysis that the ability of non-destructive measurement methods to obtain a
large number of data samples creates the potential for much more accurate pavement thickness
characterization than can normally be expected from cores.

The following section will describe the non-destructive measurement methods that were
considered and evaluated under this program.
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3. Description of the Non-Destructive Test (NDT) Methods Evaluated
Under ThisProject

The test methods evaluated under this project fall into two categories:
1. Electromagnetic Wave Methods (Ground Penetrating Radar)
2. Mechanical Wave Methods (Impact-Echo and others)

The following paragraphs will describe the fundamental aspects of the methods considered under
this study.

3.1  Ground Penetrating Radar Methods

Ground Penetrating Radar (GPR) operates using short electromagnetic pulses radiated by an
antenna which transmits these pulses and receives reflected returns from the pavement layers.
Analysis of these reflected return signals yields information on the pavement layer thickness and
electromagnetic material properties. Pavement thickness is calculated from the arrival time of the
GPR reflection from the bottom of the pavement and the velocity of travel. The determination of
the arrival time is made directly from the GPR signal. The velocity calculation requires some
other process, as discussed in the specific methods below. The velocity is related to a material
property called the dielectric constant. Typical values for velocity and dielectric constant for
pavement materials are shown in Table 1.

There are two basic types of GPR systems used for pavement evaluation—the non-contact horn
antenna systems and the contact ground-coupled systems. The following paragraphs discuss
methods for implementing these systems for pavement thickness quality assurance.

Table 1 — GPR Velocities and Dielectric Constants for Pavement Materials

velocity

metric english 